En este tutorial se va a realizar el estudio y diseño de las instalaciones solares fotovoltaicas aisladas que permiten la generación de electricidad para el consumo directo en una vivienda unifamiliar que se encuentre aislada de cualquier red eléctrica pública de suministro.
El principal objetivo de una instalación solar aislada es la de producir energía eléctrica para autoconsumo, sin necesidad de depender de una red eléctrica de distribución y suministro, de modo que se logre ser auto suficiente a este respecto.
Se tratará, por tanto, de describir los elementos que componen una instalación fotovoltaica autónoma, incluyendo catálogos y hojas de especificaciones técnicas de los distintos equipos y exponer un caso práctico de cálculo, que pueda servir de guía y modelo para otras instalaciones.
Principio fotoeléctrico
La base sobre la cual se fundamenta los actuales sistemas fotovoltaicos comerciales es el denominado principio fotoeléctrico, mediante el cual las radiaciones de la luz solar se pueden transformar en energía eléctrica. Este efecto tiene lugar en las llamadas células fotoeléctricas, unidad básica que componen los módulos o paneles fotovoltaicos.
Toda radiación de luz solar está compuesta por partículas elementales, llamadas fotones. Estas partículas llevan asociada un valor de energía (E), que depende de la longitud de onda (λ) de la radiación, y cuyo valor cuantitativo viene expresado de la forma siguiente:
h · c
E = _______
λ
donde (h) es la constante de Planck y (c) es la velocidad de la luz.
Cuando un módulo fotovoltaico recibe radiación solar, los fotones que componen dicha radiación inciden sobre las células fotovoltaicas del panel. Éstos pueden ser reflejados, absorbidos o pasar a través del panel, y sólo los fotones que quedan absorbidos por la célula fotovoltaica son los que, finalmente, van a generar electricidad.
En efecto, cuando el fotón es absorbido por la célula, la energía que porta el fotón es transferida a los átomos que componen el material de la célula fotovoltaica. Con esta nueva energía transferida, los electrones que están situados en las capas más alejadas son capaces de saltar y desprenderse de su posición normal asociada al átomo y entrar a formar parte de un circuito eléctrico que se genera.
Por lo tanto, un factor crucial para que pueda generarse el efecto fotovoltaico es que las células de los paneles solares estén compuestas por un tipo determinado de material, tales que sus átomos sean capaces de liberar electrones para crear una corriente eléctrica al recibir energía.
Los átomos de los materiales llamados semiconductores ofrecen esta propiedad, es decir, materiales que actúan como aislantes a baja temperatura y como conductores, al desprenderse de sus electrones, cuando se aumenta la energía que incide sobre ellos.
Además, para mejorar sus prestaciones estos materiales semiconductores son tratados de forma que se crean dos capas diferentes dopadas (tipo P y tipo N), con el objetivo de formar un campo eléctrico, positivo en una parte y negativo en otra, de manera que cuando la luz solar incide sobre la célula para liberar electrones, éstos puedan ser atrapados por el campo eléctrico, y formar así una corriente eléctrica.
En la actualidad, la mayoría de las células solares están construidas utilizando como material semiconductor el silicio, en sus formas mono o policristalina.
Las células solares de silicio monocristalino se fabrican a partir de secciones cortadas o extraídas de una barra de silicio perfectamente cristalizado de una sola pieza, y que permiten alcanzar rendimientos del 24% en ensayos de laboratorio y del 16% para células de paneles comercializados.
Por el contrario, para obtener células solares de silicio puro del tipo policristalino el proceso de cristalización del silicio es diferente. En este caso se parte de secciones cortadas de una barra de silicio que se ha estructurado desordenadamente en forma de pequeños cristales. Son más baratas de fabricar y se reconocen visualmente por presentar su superficie un aspecto granulado. Los rendimientos obtenidos son inferiores, alcanzándose del orden del 20% en ensayos de laboratorio y del 14% en módulos comerciales.
En consecuencia, los módulos solares fotovoltaicos fabricados con células de silicio monocristalino ofrecen una mayor potencia nominal que los hechos a base de células de silicio policristalino, debido principalmente a las mejores propiedades que ofrece el silicio monocristalino, un material muy uniforme, frente a la falta de uniformidad que presentan los límites de grano del silicio policristalino. Además, otro aspecto importante es la textura final en su superficie que presentan las células monocristalinas, de mayor calidad y con mejores propiedades antirreflexivas, que permiten mejorar las prestaciones del módulo.
Arquitectura del sistema
Una instalación fotovoltaica para vivienda está destinada a satisfacer las necesidades de consumo propio de electricidad, y consta de un esquema de instalación cuyos componentes principales se muestran en la figura adjunta.
- Paneles o módulos solares son los encargados de captar la radiación solar y transformarla en electricidad, generando una corriente continua (CC), también llamada directa (DC). El número de paneles quedará determinado por la potencia que se necesita suministrar, y su disposición y forma de conexionado (en serie o en paralelo), será en función de la tensión nominal de suministro y la intensidad de corriente que se desee generar.
- Regulador o controlador de carga, encargado de controlar la carga de las baterías desde los módulos o paneles generadores, así como de su descarga hacia el circuito de alimentación interior de la vivienda, evitando además que se produzcan cargas o descargas excesivas del conjunto de baterías.
- Acumuladores o baterías, permite el almacenamiento de la energía que se produce durante el día con la radiación solar para ser utilizada en la noche o durante periodos prolongados de mal tiempo o con poca radiación solar. Además el uso de baterías permite poder inyectar una intensidad de corriente superior a la que los propios paneles solares puedan entregar, si la instalación interior de la vivienda lo requiere.
- Inversor o convertidor DC/AC, dispositivo que permite la conversión de la corriente continua (DC) generada en los paneles fotovoltaicos en corriente alterna (AC) para que pueda ser empleada por los receptores y electrodomésticos utilizados en la vivienda.
C/. Arco, nº16. 35004 Las Palmas de Gran Canaria Islas Canarias. España.
Tlf.: +34 928 24 11 35
Fax: +34 810 101 348.
Dirección de correo electrónico yuba@yubasol.com
Sitio web http://www.yubasol.com
Twitter: https://twitter.com/YUBASOLAR
Tienda Online: http://www.yubasolar.es/